Menu
After bariatric surgery, if there is iron-refractory iron-deficiency anemia (IRIDA) and does not respond to supplemental iron therapy, excluding other possible etiologies, genetic changes involved in iron metabolism should be considered.
This study aimed to investigate the association of both mutations 1285G-C and 1246C-T, in the SLC11A2 gene, and the etiopathogenesis of anemia refractory to iron supplementation in patients undergoing bariatric surgery using Roux-en-Y gastric bypass (RYGB).
A case-control study was conducted, in which 100 patients were evaluated as Cases Group [subdivided into (i) with Anemia and (ii) without Anemia] and 100 individuals as Controls, comprising both sexes. Inherited and acquired causes of IRIDA were excluded. DNA was extracted from leukocytes of peripheral blood, and the regions that cover both mutations have been amplified by the molecular techniques such as polymerase chain reaction/restriction fragment length polymorphism.
The 1285G-C mutation was not determined in any of the 400 alleles analyzed. Regarding the 1246C-T mutation, the wild CC genotype was found with a higher prevalence in the Control Group (34%) (OR 0.5475; 95%CI 0.2920-1.027; p=0.0827). The mutant TT genotype was found only in the Cases Group I (with Anemia) (13%).
The results show the association between 1246C-T mutation, in the SLC11A2 gene, and the etiopathogenesis of IRIDA to iron supplementation in the evaluated sample. There are differences, at the molecular level, in patients with and without IRIDA after bariatric surgery using RYGB.
KRAS mutations are important events in colorectal carcinogenesis, as well as negative predictors of response to EGFR inhibitors treatment.
To investigate the association of clinical-pathological features with KRAS mutations in colorectal cancer patients treated.
Data from 69 patients with colorectal cancer either metastatic at diagnosis or later, were retrospectively analyzed. The direct sequencing and pyrosequencing techniques were related to KRAS exon 2. The mutation diagnosis and its type were determined.
KRAS mutation was identified in 43.4% of patients. The most common was c.35G>T (p.G12V), c.35G>A (p.G12D) and c.38G>A (p.G13D). No correlation was found between KRAS mutation and age (p=0.646) or gender (p=0.815). However, mutated group had higher CEA levels at admission (p=0.048) and codon 13 mutation was associated with involvement of more than one metastatic site in disease progression (p=0.029). Although there was no association between primary tumor site and mutation diagnosis (p=0.568), primary colon was associated with worse overall survival (p=0.009).
The KRAS mutation was identified in almost half of patients. Mutated KRAS group had higher levels of CEA at admission and the mutation at codon 13 was associated with involvement of more than one metastatic site in the course of the disease. Colon disease was associated with the worst overall survival.
Inhibitors of the epidermal growth factor (EGFR) represent an effective therapeutic option for patients with metastatic colorectal carcinoma, free of activating mutations in KRAS and NRAS. However, the research of mutations is of high cost and scarcely accessible. The expression of the EGFR by immunohistochemistry predicting the mutation status of the expanded RAS (KRAS and NRAS), may allow treatment by a diagnostic method less costly and more accessible.
Investigate the correlation between the clinical-pathological data, the cytoplasmic-membrane expression of the EGFR and the mutational status of the expanded RAS.
A total of 139 patients with colorectal carcinoma from the archives of Instituto Goiano de Oncologia e Hematologia were evaluated.
Mutation of the expanded RAS was detected in 78 (56.1%) cases. The EGFR expression was stratified in 23 (16.5%) “positive”, 49 (35.2%) "negative" and 67 (48.2%) "uncertain". No significant correlation was found between the mutational status of the RAS and the EGFR expression in comparison to age, gender, location, histological type, histological grade and stage. From 23 "positive” cases, 21 (91.3%) showed wild-type RAS gene, and 49 "negative”, 41 (83.7%) presented mutation, resulting in a strong association between EGFR "positive", "negative” groups and the mutational status of the RAS (p<0.001), with 86.1% of accuracy.
The cytoplasmic-membrane analysis of the EGFR expression stratified into "positive", "negative" and "uncertain" predicts mutational status of the RAS in 51.7% of the cases (p<0.001), with 86.1% of accuracy.
Desenvolvido por Surya MKT